メインコンテンツまでスキップ

Estimators

In this tutorial, we introduce how to compute expectation values of operators OO for a given state ψ|\psi \rangle:

O=ψOψ\begin{equation} \langle O\rangle = \langle\psi|O|\psi\rangle\nonumber \end{equation}

In QURI Parts, this is done by an Estimator. There are various types of Estimators in QURI Parts. In this tutorial we focus on those that computes the exact expectation value of an operator on a pure state. We will also summarize all the currently available estimators in QURI Parts at the bottom of this page.

Interface

Here we introduce the interface of 2 estimators in QURI Parts: QuantumEstimator and ConcurrentQuantumEstimator. They are both abstract functions that need concrete implementations for us to perform any computation. Here, we first introduce their definitions and related terminologies:

  • Estimatable: Represents an Operator or a PauliLabel.

  • Estimate: An Estimate is any object that contains a value property and an error property.

  • QuantumEstimator: A QuantumEstimator is any function that takes an Estimatable as its first argument, a CircuitQuantumState or QuantumStateVector as the second argument and returns an Estimate. The Estimate represents the estimated expectation value and the error of the estimation.

  • ConcurrentQuantumEstimator: A ConcurrentQuantumEstimator is a function that estimates the expectation values of multiple pairs of Estimatable and quantum state.

We demonstrate their function signatures below:

from typing import Union, Callable, Iterable, Sequence
from typing_extensions import TypeAlias, TypeVar
from quri_parts.core.estimator import Estimate
from quri_parts.core.operator import Operator, PauliLabel
from quri_parts.core.state import CircuitQuantumState, QuantumStateVector

#: Represents either CircuitQuantumState or QuantumStateVector.
_StateT = TypeVar("_StateT", bound=Union[CircuitQuantumState, QuantumStateVector])

#: Represents either Operator or PauliLabel.
Estimatable: TypeAlias = Union[Operator, PauliLabel]

#: A function that computes the expectation value of an operator on a given state.
QuantumEstimator: TypeAlias = Callable[[Estimatable, _StateT], Estimate[complex]]

#: A function that computes the expectation values of pairs of operators and states.
ConcurrentQuantumEstimator: TypeAlias = Callable[
[Sequence[Estimatable], Sequence[_StateT]],
Iterable[Estimate[complex]],
]

Create and execute estimators

In this section, we introduce concrete instances of QuantumEstimators and ConcurrentQuantumEstimators provided by the quri_parts.qulacs package. We will demonstrate how to create them and perform computations with them. The estimators we introduce here are exact estimators, thus the error property in the returned Estimate will always be 0.

In QURI Parts, we provide several estimator creation functions, they are often named create_..._estimator. You would obtain an estimator object by running the creation function. Here, we introduce:

  • create_qulacs_vector_estimator
  • create_qulacs_vector_concurrent_estimator

Let's first prepare some operators and states for us to estimate later

import numpy as np
from quri_parts.core.operator import pauli_label, Operator, PAULI_IDENTITY

op1 = Operator({
pauli_label("X0 Y1"): 2,
pauli_label("Z0 Y1"): 2j,
PAULI_IDENTITY: 8,
})
op2 = pauli_label("X0 Y1 Z3")
op3 = pauli_label("X0 X1 X3")
from quri_parts.core.state import quantum_state
from quri_parts.circuit import QuantumCircuit, X, CNOT, H

n_qubits = 4
state1 = quantum_state(
n_qubits, circuit=QuantumCircuit(n_qubits, gates=[X(0), H(1), H(2), CNOT(1, 2)])
)
state2 = quantum_state(n_qubits, bits=0b1101)
state3 = quantum_state(
n_qubits, vector=np.array(
[1/np.sqrt(2**n_qubits) for _ in range(2**n_qubits)]
)
)

Qulacs vector estimator

Here we introduce the vector estimator provided by the quri_parts.qulacs package. A vector estimator is an estimator that computes the expectation value of an operator for a pure state exactly, i.e. it computes

O=ψOψ\begin{equation} \langle O \rangle = \langle \psi|O|\psi \rangle \end{equation}

with ψ|\psi\rangle being either a CircuitQuantumState or a QuantumStateVector. Now, let's create a vector estimator:

from quri_parts.qulacs.estimator import create_qulacs_vector_estimator
qulacs_estimator = create_qulacs_vector_estimator()

With this vector estimator at hand, we can estimate the expectation values of a an operator for a given state:

print(qulacs_estimator(op1, state1))
print(qulacs_estimator(op2, state2))
print(qulacs_estimator(op3, state3))
#output
_Estimate(value=(7.9999999999999964+0j), error=0.0)
_Estimate(value=0j, error=0.0)
_Estimate(value=(1+0j), error=0.0)

Qulacs vector concurrent estimator

There is also a ConcurrentQuantumEstimator interface, which estimates multiple operators and multiple states at once. The interface accept either one of the followings:

  • One operator, multiple states

  • Multiple operators, one state

  • The same number of operators and states

First, we create a concurrent estimator

from quri_parts.qulacs.estimator import create_qulacs_vector_concurrent_estimator
qulacs_concurrent_estimator = create_qulacs_vector_concurrent_estimator()

As mentioned above, there are 3 possible inputs to a concurrent estimator

  • Estimate concurrently for the same number of operators and states:
qulacs_concurrent_estimator([op1, op2, op3], [state1, state2, state3])
#output
[_Estimate(value=(7.9999999999999964+0j), error=0.0),
_Estimate(value=0j, error=0.0),
_Estimate(value=(1+0j), error=0.0)]
  • Estimate concurrently for one operator, multiple states.
qulacs_concurrent_estimator([op1], [state1, state2, state3])
#output
[_Estimate(value=(7.9999999999999964+0j), error=0.0),
_Estimate(value=(8+0j), error=0.0),
_Estimate(value=(8+0j), error=0.0)]
  • Estimate concurrently for multiple operators, one state.
qulacs_concurrent_estimator([op1, op2, op3], [state1])
#output
[_Estimate(value=(7.9999999999999964+0j), error=0.0),
_Estimate(value=0j, error=0.0),
_Estimate(value=0j, error=0.0)]

For the case of Qulacs, you can create a ConcurrentQuantumEstimator specifying a concurrent.futures.Executor(default is None, meaning no parallelization) and concurrency (default is 1). Note that since Qulacs itself has multithreading support, using ThreadPoolExecutor or ProcessPoolExecutor may not have performance improvement.

from concurrent.futures import ThreadPoolExecutor
from quri_parts.qulacs.estimator import create_qulacs_vector_concurrent_estimator

executor = ThreadPoolExecutor(max_workers=4)
qulacs_concurrent_estimator = create_qulacs_vector_concurrent_estimator(executor, concurrency=4)

qulacs_concurrent_estimator([op1, op2, op3], [state1, state2, state3])
#output
[_Estimate(value=(7.9999999999999964+0j), error=0.0),
_Estimate(value=0j, error=0.0),
_Estimate(value=(1+0j), error=0.0)]

All currently available estimators in QURI Parts

In this section, we summarize all available estimators in QURI Parts. We list out all of them and give brief explanation of what they do. They can be classified into the following groups:

  • Quantum estimators
  • Parametric estimators
  • Overlapping esimtators
  • Sampling estimators
  • Error mitigation estimators

Quantum estimators

First, we summarize all the available quantum estimators that performs exact expectation value computations for either noiseless and noisy systems. For the density matrix estimators, we introduce how to use them in the Noisy Simulation tutorial.

ModuleGenerating functionSupport noisy estimationTypeDepend on other estimators
quri_parts.qulacscreate_qulacs_vector_estimator(concurrent)(Concurrent)QuantumEstimator (State vector)
quri_parts.qulacscreate_qulacs_density_matrix_estimator(concurrent)(Concurrent)QuantumEstimator (density matrix)
quri_parts.itensorcreate_itensor_mps_estimator(concurrent)(Concurrent)QuantumEstimator (MPS)
quri_parts.stimcreate_stim_clifford_estimator(concurrent)(Concurrent)QuantumEstimator (Clifford)

Parametric estimators

Parametric estimators are estimators that perform expectation value estimation for parametric states. They will be introduced in the Parametric State tutorial. In short, they compute

O(θ),\begin{equation} \langle O \rangle (\vec{\theta}), \nonumber \end{equation}

where θ\vec{\theta} are circuit parameters.

There are 2 additional special parametric estimators in QURI Parts, which are gradient and Hessian estimators. They compute the gradient and Hessian of an expectation value with respect to a set of circuit parameters.

  • GradientEstimator:

    Oθi(θ)\begin{equation} \frac{\partial \langle O \rangle}{\partial \theta_i} (\vec{\theta}) \nonumber \end{equation}
  • HessianEstimator:

    2Oθiθj(θ)\begin{equation} \frac{\partial^2 \langle O \rangle}{\partial \theta_i \partial \theta_j} (\vec{\theta}) \nonumber \end{equation}
ModuleGenerating functionSupport noisy estimationTypeDepend on other estimators
quri_parts.qulacscreate_qulacs_vector_parametric_estimator(concurrent)(Concurrent)ParametricQuantumEstimator(State vector)
quri_parts.qulacscreate_qulacs_density_matrix_parametric_estimator (concurrent)(Concurrent)ParametricQuantumEstimator(density matrix)
quri_parts.itensorcreate_itensor_mps_parametric_estimator (concurrent)(Concurrent)ParametricQuantumEstimator (MPS)
quri_parts.corecreate_numerical_gradient_estimator✔ (depends on input estimator)GradientEstimatorConcurrentParametricEstimator
quri_parts.corecreate_parameter_shift_gradient_estimator✔ (depends on input estimator)GradientEstimatorConcurrentParametricEstimator
quri_parts.corecreate_parameter_shift_hessian_estimator✔ (depends on input estimator)HessianEstimatorConcurrentParametricEstimator

The "Depend on other estimators" column means that if the estimator is created from another estimator. If yes, we explicitly show what type of estimator should be used to create those estimators that depends on other estimators.

Overlapping estimators

In addition to those estimators who estimate expectation values, QURI Parts also provides estimators who evaluate the square of the inner product of two states.

  • OverlapEstimator: Evaluates: ψφ2|\langle\psi|\varphi\rangle|^2
  • OverlapWeightedEstimator: iwiψiφi2\sum_{i}w_i|\langle\psi_i|\varphi_i\rangle|^2
  • ParametricOverlapWeightedEstimator: iwiψ(θi)φ(ϕi)2\sum_{i}w_i|\langle\psi(\vec{\theta}_i)|\varphi(\vec{\phi}_i)\rangle|^2
ModuleGenerating functionSupport noisy estimationTypeDepend on other estimators
quri_parts.qulacs.overlap_estimatorcreate_qulacs_vector_overlap_estimatorOverlapEstimator
quri_parts.qulacs.overlap_estimatorcreate_qulacs_vector_overlap_weighted_sum_estimatorOverlapWeightedSumEstimator
quri_parts.qulacs.overlap_estimatorcreate_qulacs_vector_parametric_overlap_weighted_sum_estimatorParametricOverlapWeightedSumEstimator

Sampling estimators

Sampling estimator is an estimator that estimates the expectation value of an operator with sampling simulations or sampling experiments. Details of sampling estimation will be introduced in the sampling estimation tutorial.

ModuleGenerating functionSupport noisy estimationTypeDepend on other samplers
quri_parts.corecreate_sampling_estimator (concurrent)✔ (depends on input sampler)(Concurrent)QuantumEstimatorConcurrentSampler
quri_parts.corecreate_sampling_overlap_estimator✔ (depends on input sampler)OverlapEstimatorConcurrentSampler
quri_parts.corecreate_sampling_overlap_weighted_sum_estimator✔ (depends on input sampler)OverlapWeightedSumEstimatorConcurrentSampler

Error mitigation estimators

We also provide estimators that compute expectation values with a given error mitigation scheme. Their usage are introduced in the Error Mitigation tutorial.

ModuleMitigation methodGenerating functionSupport noisy estimationTypeDepend on other estimators
quri_parts.algo.mitigationClifford Data Regressioncreate_cdr_estimatorQuantumEstimator1 noiseless and 1 noisy ConcurrentQuantumEstimator
quri_parts.algo.mitigationZero Noise Extrapolationcreate_zne_estimatorQuantumEstimatorNoisy ConcurrentQuantumEstimator